Noise Sensitivity Analysis of Depth - from - Defocusby a Spatial - Domain
نویسندگان
چکیده
Depth-from-Defocus (DFD) using the Spatial-Domain Convolution/Deconvolution Transform Method (STM) is a useful technique for 3D vision. STM involves simple local operations in the spatial domain on only two images recorded with diierent camera parameters (e.g. by changing lens position or changing aperture diameter). In this paper we provide a theoretical treatment of the noise sensitivity analysis of STM and verify the theoretical results with experiments. This lls an important gap in the current research literature wherein the noise sensitivity analysis of STM is limited to experimental observations. Given the image and noise characteristics, here we derive an expression for the Root Mean Square (RMS) error in lens lens position for focusing an object. This RMS error is useful in estimating the uncertainty in depth obtained by STM. We present the results of computer simulation experiments for diierent noise levels. The experiments validate the theoretical results.
منابع مشابه
Prediction of mineral deposit model and identification of mineralization trend in depth using frequency domain of surface geochemical data in Dalli Cu-Au porphyry deposit
In this research work, the frequency domain (FD) of surface geochemical data was analyzed to decompose the complex geochemical patterns related to different depths of the mineral deposit. In order to predict the variation in mineralization in the depth and identify the deep geochemical anomalies and blind mineralization using the surface geochemical data for the Dalli Cu-Au porphyry deposit, a ...
متن کاملPrediction of dispersed mineralization zone in depth using frequency domain of surface geochemical data
Discrimination of the blind and dispersed mineralization deposits is a challenging problem in geochemical exploration. The frequency domain (FD) of the surface geochemical data can solve this important issue. This new exploratory information can be achieved using the interpretation of FD of geochemical data, which is impossible in spatial domain. In this research work, FD of the surface geochem...
متن کاملSpeckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Exploiting Intra-scale and Inter-scale Dependencies
Synthetic Aperture Radar (SAR) images are inherently affected by a multiplicative noise-like phenomenon called speckle, which is indeed the nature of all coherent systems. Speckle decreases the performance of almost all the information extraction methods such as classification, segmentation, and change detection, therefore speckle must be suppressed. Despeckling can be applied by the multilooki...
متن کاملSpeckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Using Laplace Distribution
Speckle is a granular noise-like phenomenon which appears in Synthetic Aperture Radar (SAR) images due to coherent properties of SAR systems. The presence of speckle complicates both human and automatic analysis of SAR images. As a result, speckle reduction is an important preprocessing step for many SAR remote sensing applications. Speckle reduction can be made through multi-looking during the...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کامل